# C.U.SHAH UNIVERSITY Summer Examination-2016 

Subject Name: Operations Research

Subject Code:4SC06ORE1

Branch: B.Sc. (Mathematics)

Semester: 6 Date: 17/05/2016
Time: 2:30 To 5:30 Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1

## Attempt the following questions:

a) What is degeneracy problems?
b) What is linear programming problem?
c) Define: Payoff matrix.
d) Define: Network.
e) Define: Unbounded solution.
f) Define: Zero-sum game.
g) Define: Basic solution.
h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false?
i) The game has no saddle point means the maximin value equal to minimax value. Determine whether the statement is true or false?
j) In a standard LP problem (ready to write in simplex table), the number of basic variables equals the number of equality constraints. Determine whether the statement is true or false?
k) Every problem of real life situation when formulated in mathematical model assumes a linear form. Determine whether the statement is true or false?

## Attempt any four questions from Q-2 to Q-8

## Attempt all questions

a) A manufacturer produces two types of models $M_{1}$ and $M_{2}$. Each model of the type $M_{1}$ requires 4 hours of grinding and 2 hours of polishing; whereas each model of the type $M_{2}$ requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a week and each polisher works for 60 hours a week. Profit on $M_{1}$ model is Rs.3.00 and on $M_{2}$ model is Rs.4.00. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models, so that he may make the maximum profit in a week?


Formulate the problem as a linear programming problem.
b) Find the graphical solution of the following LP Problem.

Maximize $z=x_{1}+x_{2}$
Subject to

$$
\begin{gathered}
x_{1}-x_{2} \geq 0 \\
-3 x_{1}+x_{2} \geq 3
\end{gathered}
$$

$$
\text { and } \quad x_{1}, x_{2} \geq 0
$$

c) Write the Standard form of the following LP problem.
i) Maximizez $=4 x_{1}+10 x_{2}$
Subject to

$$
\begin{gather*}
2 x_{1}+x_{2} \leq 50 \\
\\
2 x_{1}+5 x_{2} \leq 100 \\
 \tag{14}\\
2 x_{1}+3 x_{2} \leq 90 \\
\text { and } \quad x_{1}, x_{2} \geq 0
\end{gather*}
$$

ii) Maximize $z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 2 \\
3 x_{1}+4 x_{2} & \geq 12
\end{aligned}
$$

$$
\text { and } \quad x_{1}, x_{2} \geq 0
$$

## Q-4

## Attempt all questions

a) Use the Simplex method to solve the following LP problem.

Maximize $z=3 x_{1}+9 x_{2}$
Subject to

$$
\begin{align*}
& x_{1}+4 x_{2} \leq 8 \\
& x_{1}+2 x_{2} \leq 4 \tag{04}
\end{align*}
$$

and $\quad x_{1}, x_{2} \geq 0$
b) Obtain initial basic feasible solution of the following transportation problem by using matrix minima method.

|  | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | 23 | 27 | 16 | 18 | 30 |
| $S_{2}$ | 12 | 17 | 20 | 51 | 40 |
| $S_{3}$ | 22 | 28 | 12 | 32 | 53 |
| Demand | 22 | 35 | 25 | 41 |  |

c) Draw a network diagram for the following data:

| Activity | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Immediate <br> Predecessors | - | A | A | B | B,C | E | D, F | G |

Attempt all questions
a) Use the penalty (Big-M) Method to solve the following LP Problem.

Minimize $z=4 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& 3 x_{1}+x_{2} \geq 27 \\
& x_{1}+x_{2} \geq 21
\end{aligned}
$$

and $\quad x_{1}, x_{2} \geq 0$
b) A dietician plans diet menu for a group of students. She concentrates on three
components-fat, carbohydrate, and protein. She has two main foods $A$ and $B$. Each 100 gram of $A$ has 2 units of fat, 1 unit of carbohydrate and 5 units protein. Each 100 gram of food $B$ has 3 units of fat, 2 units of carbohydrate and 3 units of protein. She wants that the diet must contain at least 18 units of fat, 20 units of

carbohydrate, and 24 units of protein. The basic cost of $100 \operatorname{gram}$ of food $A$ is Rs, 10 and Rs. 12 for that of food $B$. Her problem is to make the proportionate combination of these types of food that satisfies the basic needs of the diet and minimizes the total cost of food. Formulation the problem as a linear programming problem.
c) Solve the following game to find the saddle point.

| Player A | Player B |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strategy | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ |  |
|  | $a_{1}$ | 4 | 0 | 1 | 7 | -1 |  |
|  | $a_{2}$ | 0 | -3 | -5 | -6 | 5 |  |
|  | $a_{3}$ | 3 | 2 | 2 | 4 | 3 |  |
|  | $a_{4}$ | -6 | 1 | -2 | 0 | -5 |  |

## Attempt all questions

a) Solve the following transportation problem using MODI Method.

|  | $D_{1}$ |  | $D_{2}$ | $D_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| Availability |  |  |  |  |
| $O_{1}$ | 2 | 7 | 4 | 5 |
| $O_{2}$ | 3 | 3 | 7 |  |
| $O_{3}$ | 5 | 4 | 1 |  |
| $O_{4}$ | 1 | 6 | 2 | 7 |
| Requirement | 7 | 9 | 18 | 34 |

b) Find the graphical solution of the following LP Problem.

Maximize $z=2 x_{1}+3 x_{2}$
Subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
2 x_{1}+3 x_{2} \leq 6
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$
c) Draw a network diagram for the following data:

| Activity | A | B | C | D | E | F | G | H | I | J | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Immediate <br> Predecessors | - | - | A | B | A | B | C,D | G,F | E | H,I | J |

Attempt all questions
a) What are the limitations of linear programming problem?
b) Determine all basic feasible solutions of the system of equations
$2 x_{1}+x_{2}+4 x_{3}=11,3 x_{1}+x_{2}+5 x_{3}=14$.
c) A company management and the labour union are negotiating a new three year settlement. Each of these has 4 strategies:
I : Hard and aggressive bargaining
II : Reasoning and logical approach
III : Legalistic strategy
IV : Conciliatory approach
The costs to the company are given for every pair of strategy choice.


| Union | Company Strategies |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategies | I | II | III | IV |
| I | 20 | 15 | 12 | 35 |
| II | 25 | 14 | 8 | 10 |
| III | 40 | 2 | 10 | 5 |
| IV | -5 | 4 | 11 | 0 |

What strategy will the two sides adopt? Also determine the value of the game.

## Q-8

Attempt all questions
a) Solve the following transportation problem using MODI Method.

|  | $D_{1}$ |  | $D_{2}$ | $D_{3}$ | $D_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply |  |  |  |  |  |
| $S_{1}$ | 21 | 16 | 25 | 13 | 11 |
| $S_{2}$ | 17 | 18 | 14 | 23 |  |
|  | 13 |  |  |  |  |
| $S_{3}$ | 32 | 27 | 18 | 41 |  |
| Demand | 06 | 10 | 12 | 15 |  |
|  |  |  |  |  |  |

b) Solve the LP Problem by Simplex method.

Maximize $z=2 x_{1}+x_{2}$
Subject to

$$
\begin{gathered}
4 x_{1}+3 x_{2} \leq 12 \\
4 x_{1}+x_{2} \leq 8 \\
4 x_{1}-x_{2} \leq 8
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$
Attempt all questions
Explain North-West corner method. Find the initial basic feasible solution of the
following transportation problem by using North-West corner method.

|  | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | 19 | 30 | 50 | 10 | 7 |
| $S_{2}$ | 70 | 30 | 40 | 60 | 9 |
| $S_{3}$ | 40 | 8 | 70 | 20 | 18 |
| Demand | 5 | 8 | 7 | 14 | 34 |

b) Explain differences between CPM and PERT in detail.


