Q-

C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Operations Research

Semester: 6Date: 17/05/2016Time: 2:30 To 5:30Marks: 70Instructions:(1) Use of Programmable calculator & any other electronic instrument is prohibited.(2) Instructions written on main answer book are strictly to be obeyed.(3) Draw neat diagrams and figures (if necessary) at right places.(4) Assume suitable data if needed.Attempt the following questions:a) What is degeneracy problems?b) What is linear programming problem?c) Define: Payoff matrix.d) Define: Network.e) Define: Unbounded solution.f) Define: Zero-sum game.g) Define: Basic solution.h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false?i) The game has no saddle point means the maximin value equal to minimax value. Determine whether the statement is true or false?	S	ubject	Code:4SC06ORE1	Branch: B.Sc. (Mathematics)					
 (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. Attempt the following questions: a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 	S	emester	r: 6 Date: 17/05/2016	Time: 2:30 To 5:30	Marks: 70				
 (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. Attempt the following questions: a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 	Ir	nstructio	ons:						
 (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. Attempt the following questions: a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		(1) U	Use of Programmable calculator & any oth	her electronic instrument	is prohibited.				
 (4) Assume suitable data if needed. Attempt the following questions: a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 									
 Attempt the following questions: a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 				ary) at right places.					
 a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		(4)	Assume suitable data if needed.						
 a) What is degeneracy problems? b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 	_								
 b) What is linear programming problem? c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 	1		Attempt the following questions:						
 c) Define: Payoff matrix. d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		a)							
 d) Define: Network. e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		b)	What is linear programming problem?						
 e) Define: Unbounded solution. f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		c)	•						
 f) Define: Zero-sum game. g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 		d)							
 g) Define: Basic solution. h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 									
 h) All the three methods of finding IBFS to a transportation problem work on different working principles.Determine whether the statement is true or false? i) The game has no saddle point means the maximin value equal to minimax value. 									
different working principles.Determine whether the statement is true or false?i) The game has no saddle point means the maximin value equal to minimax value.									
i) The game has no saddle point means the maximin value equal to minimax value.		h)							
		•`							
Determine whether the statement is true of false?		1)	•	-	minimax value.				
		•\			1 (1)				
j) In a standard LP problem (ready to write in simplex table), the number of basic		J)	- · · ·	-					
variables equals the number of equality constraints. Determine whether the statement is true or false?				constraints. Determine w	nemer the				

k) Every problem of real life situation when formulated in mathematical model (01) assumes a linear form. Determine whether the statement is true or false?

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)

(14)
(02)
(02)
(02)
(01)
(01)
(01)
(01)
(01)

(01)

(01)

a) A manufacturer produces two types of models M_1 and M_2 . Each model of the type (05) M_1 requires 4 hours of grinding and 2 hours of polishing; whereas each model of the type M_2 requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a week and each polisher works for 60 hours a week. Profit on M_1 model is Rs.3.00 and on M_2 model is Rs.4.00. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models, so that he may make the maximum profit in a week?

Page 1 || 4

Formulate the problem as a linear programming problem.

b) Find the graphical solution of the following LP Problem.

Maximize $z = x_1 + x_2$ Subject to

$$\begin{aligned}
 x_1 - x_2 &\ge 0 \\
 -3x_1 + x_2 &\ge 3
 \end{aligned}$$

and $x_1, x_2 \ge 0$ Write the Standard form of the following LP problem.

i) Maximize $z = 4x_1 + 10x_2$ Subject to $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ and $x_1, x_2 \ge 0$ ii) Maximize $z = 3x_1 + 2x_2$ Subject to $2x_1 + x_2 \le 2$ $3x_1 + 4x_2 \ge 12$ and $x_1, x_2 \ge 0$

Q-3

c)

a) Use the Simplex method to solve the following LP problem.

Maximize $z = 3x_1 + 9x_2$

Subject to

$$\begin{aligned} x_1 + 4x_2 &\leq 8\\ x_1 + 2x_2 &\leq 4 \end{aligned}$$

and
$$x_1, x_2 \ge 0$$

b) Obtain initial basic feasible solution of the following transportation problem by (04) using matrix minima method.

	D_1	D_2	D_3	D_4	Supply
S_1	23	27	16	18	30
<i>S</i> ₂	12	17	20	51	40
S_3	22	28	12	32	53
Demand	22	35	25	41	

c) Draw a network diagram for the following data:

Activity	А	В	С	D	Е	F	G	Η
Immediate Predecessors	-	А	А	В	B,C	Е	D, F	G

Q-4

Attempt all questions

Attempt all questions

a) Use the penalty (Big-M) Method to solve the following LP Problem.

Subject to

 $Minimize \ z = 4x_1 + 2x_2$

$$3x_1 + x_2 \ge 27 x_1 + x_2 \ge 21$$

$$x_1 + x_2 \ge 1$$

and
$$x_1, x_2 \ge 0$$

b) A dietician plans diet menu for a group of students. She concentrates on three components-fat, carbohydrate, and protein. She has two main foods A and B. Each 100 gram of A has 2 units of fat, 1 unit of carbohydrate and 5 units protein. Each 100 gram of food B has 3 units of fat, 2 units of carbohydrate and 3 units of protein. She wants that the diet must contain at least 18 units of fat, 20 units of

Page 2 || 4

(05)

(04)

(14) (07)

(03)

(14)

(06)

carbohydrate, and 24 units of protein. The basic cost of 100 gram of food A is Rs, 10 and Rs. 12 for that of food B. Her problem is to make the proportionate combination of these types of food that satisfies the basic needs of the diet and minimizes the total cost of food. Formulation the problem as a linear programming problem.

	following game to find the saddle point. Player B										
	Strateg	rategy b_1			b_2	1	b_3	b_4		$b_{\rm f}$	
	a_1	/	4		0		1	7		-1	
Player A	<i>a</i> ₂		0		-3		-5	-6		5	
	<i>a</i> ₃		3		2		2	4		3	
	a_4		-6		1		-2	0		-4	5
Attempt all	question	IS									
Solve the fo	llowing t	ranspo	ortation	n probl	lem usi	ng MC	DDI Me	ethod.			
			_	<i>D</i> ₁	D_2 l	D_3 A	Availab	ility			
		O_1		2		4	5				
		<i>0</i> ₂		3	3	7	8				
		O_3		5	4	1	7				
		O_4		1	6	2	14				
	Ree	quiren	nent	7	9 1	8	34				
Find the gra	phical sol	lution	of the	follow	ving LP	Probl	lem.				
				z = 2x	$x_1 + 3x$	2					
		Subj	ect to								
							$x_2 \leq 4$				
					2 <i>x</i>	i ₁ + 3	$8x_2 \leq 6$	5			
-	$x_2 \ge 0$	-									
Draw a netv						1			_		
Activity	A	В	C	D	E	F	G	Н	Ι	J	Κ
Immediat Predecesso	-	-	А	В	Α	В	C,D	G,F	Е	H,I	J
Attempt all	question	IS									
What are the	e limitatio	ons of	linear	progra	amming	probl	lem?				
Determine a	ll basic fe	easible	e soluti	ions of	f the sys	stem o	of equat	tions			
$2x_1 + x_2 +$	$4x_3 = 11$	l, 3 <i>x</i> ₁	+ x ₂ +	$-5x_{3}$	= 14.						
A company	managen	nent ar	nd the	labour	union	are ne	gotiatiı	ng a ne	w th	ree ye	ar
settlement. I	Each of th	nese ha	as 4 sti	rategie	es:						
I : Hard and				-							
II D '		ai a a 1 a	nnrood	h							
II : Reasonin	ng and log	gical a	ppioa	-11							

Q-5

Q-6

- (

III : Legalistic strategy

IV : Conciliatory approach

The costs to the company are given for every pair of strategy choice.

Page 3 || 4

Union		Company	Strategies	
Strategies	Ι	II	III	IV
Ι	20	15	12	35
II	25	14	8	10
III	40	2	10	5
IV	-5	4	11	0

What strategy will the two sides adopt? Also determine the value of the game.

Q-7

	Attempt all questions
a)	Solve the following transportation problem using MODI Method.

g transportation problem using mobilitients									
	D_1	D_2	D_3	D_4	Supply				
S_1	21	16	25	13	11				
S_2	17	18	14	23	13				
S_3	32	27	18	41	19				
Demand	06	10	12	15					

b) Solve the LP Problem by Simplex method.

Maximize $z = 2x_1 + x_2$ Subject to

$$4x_1 + 3x_2 \le 12 4x_1 + x_2 \le 8 4x_1 - x_2 \le 8$$

and $x_1, x_2 \ge 0$

Q-8 Attempt all questions

Explain North-West corner method. Find the initial basic feasible solution of the (07) a) following transportation problem by using North-West corner method.

${\boldsymbol{\omega}}$			2	0		
		D_1	D_2	D_3	D_4	Supply
	S_1	19	30	50	10	7
	S_2	70	30	40	60	9
	S_3	40	8	70	20	18
	Demand	5	8	7	14	34

Explain differences between CPM and PERT in detail. b)

(07)

Page 4 || 4

(14) (07)

(07)

(14)